Kilix: Heterogeneous Modeling of Gesture-Based 3D Applications

R. Deshayes and T. Mens
Institut COMPLEXYS, University of Mons, Belgium

C. Jacquet, C. Hardebolle, F. Boulanger
Supelec E3S – Computer Science Dept., France
Goals of our research

- Reduce complexity of developing HCI applications
 - By using visual modeling instead of programming

- Assess the usability of heterogeneous modeling for this purpose

- Evaluate the strengths and shortcomings of ModHel’X, a heterogeneous modeling environment
 - Explore and improve its notions of semantic adaptation

wwwdi.supelec.fr/software/ModHelX
wwwdi.supelec.fr/software/ModHelX/Kilix
Case study

- Gestural interaction with a graphical 3D application
 - Using the *Kinect* controller to interact with virtual books using hands only
• Client-server architecture
 • Low coupling between I/O devices and user interaction models

• Combining different models of computation (MoC)
 • choose the most appropriate formalism for the task at hand
 • discrete events (DE)
 • synchronous data flow (SDF)
 • timed finite state machines (TFSM)
• **Client-server architecture**
 • Low coupling between I/O devices and user interaction models

• **Combining different models of computation (MoC)**
 • choose the most appropriate formalism for the task at hand
 • *discrete events (DE)*
 • *synchronous data flow (SDF)*
 • *timed finite state machines (TFSM)*
Heterogenous modeling

- Hierarchical architecture
- Top-level model contains 4 blocks
 - MoC is discrete events (DE)
 - communication through timestamped events containing data
Semantic adaptation

- **Interface blocks** adapt the **semantics** between outer and inner models using different models of computation.

- Adaptation can be made to:
 - **Data** (which may be represented differently)
 - **Time** (e.g., different time units, different time scales, continuous vs. discrete time)
 - **Control** (trigger observations of the internal model at instants requested by the internal MoC)
- Receives data from *Kinect* and converts it into hand gesture events
- MoC = synchronous data flow (SDF)
 - Processes a chain of sampled signals received from *Kinect* at a fixed rate
 - Semantic adapter generates DE events when non-null SDF tokens are produced
• Interprets and converts hand gestures into meaningful actions for 3D object manipulation
 • MoC = timed finite state machines (TFSM)
 • DE/TFSM adapter converts between DE events and symbols for the state machine
Virtual Scene block

- Represents graphical 3D objects (e.g., book) that interpret the actions as object-specific behaviour (e.g. opening or closing the book)
- MoC = TFSM
• General overview revisited
• Heterogeneous modeling is useful for HCI applications

• Semantic adaptation can be used
 • To adapt between models of computation
 • To map application actions (e.g., swipe) to object behaviors (e.g., open or close)
 • To use the same component differently in different applications
 • Leads to less coupling and higher component reusability

• Dynamic modeling is difficult to achieve
 • e.g. variable number of users and books at runtime
Future work

• Compare strengths and weaknesses of *homogenous* and *heterogenous* modeling
 • Based on common case study
 • Expressed using statecharts only
 • Expressed using high-level Petri nets
 • Joint work with Ph. Palanque, Toulouse (PetShop tool)
 • Expressed using ModHel’X

• ModHel’X improvements
 • Performance issues
 • Add support for visual editing of models
 • Support domain-specific languages to match the application domain better (work in progress)
 • Extend existing MoC (TFSM++)
For homogeneous modeling

For heterogeneous modeling

• B. Baudry et al. Bridging the Chasm between Executable Metamodeling and Models of Computation. SLE 2012